Copied to
clipboard

G = C424D10order 320 = 26·5

4th semidirect product of C42 and D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C424D10, C4○D2011C4, (C2×D20)⋊24C4, (C4×C20)⋊3C22, C4.83(C2×D20), D204C42C2, D20.36(C2×C4), (C2×C20).144D4, (C2×C4).147D20, C20.303(C2×D4), C42⋊C24D5, (C2×Dic10)⋊23C4, (C22×C10).78D4, C20.70(C22⋊C4), (C2×C20).794C23, C20.169(C22×C4), Dic10.38(C2×C4), C55(C42⋊C22), C4○D20.38C22, (C22×C4).113D10, C23.21(C5⋊D4), C4.Dic520C22, C4.10(D10⋊C4), (C22×C20).154C22, C22.25(D10⋊C4), C4.68(C2×C4×D5), (C2×C4).46(C4×D5), (C2×C4○D20).8C2, (C2×C20).267(C2×C4), (C5×C42⋊C2)⋊4C2, (C2×C10).461(C2×D4), (C2×C4).45(C5⋊D4), C10.88(C2×C22⋊C4), (C2×C4.Dic5)⋊10C2, C22.27(C2×C5⋊D4), C2.20(C2×D10⋊C4), (C2×C4).708(C22×D5), (C2×C10).81(C22⋊C4), SmallGroup(320,632)

Series: Derived Chief Lower central Upper central

C1C20 — C424D10
C1C5C10C2×C10C2×C20C4○D20C2×C4○D20 — C424D10
C5C10C20 — C424D10
C1C4C22×C4C42⋊C2

Generators and relations for C424D10
 G = < a,b,c,d | a4=b4=c10=d2=1, ab=ba, cac-1=ab2, dad=ab-1, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 590 in 154 conjugacy classes, 59 normal (41 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C4≀C2, C42⋊C2, C2×M4(2), C2×C4○D4, C52C8, Dic10, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C42⋊C22, C2×C52C8, C4.Dic5, C4.Dic5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C4○D20, C2×C5⋊D4, C22×C20, D204C4, C2×C4.Dic5, C5×C42⋊C2, C2×C4○D20, C424D10
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, D10, C2×C22⋊C4, C4×D5, D20, C5⋊D4, C22×D5, C42⋊C22, D10⋊C4, C2×C4×D5, C2×D20, C2×C5⋊D4, C2×D10⋊C4, C424D10

Smallest permutation representation of C424D10
On 80 points
Generators in S80
(1 63 28 46)(2 69 29 42)(3 65 30 48)(4 61 26 44)(5 67 27 50)(6 64 24 47)(7 70 25 43)(8 66 21 49)(9 62 22 45)(10 68 23 41)(11 71 36 56)(12 77 37 52)(13 73 38 58)(14 79 39 54)(15 75 40 60)(16 76 31 51)(17 72 32 57)(18 78 33 53)(19 74 34 59)(20 80 35 55)
(1 18 10 13)(2 19 6 14)(3 20 7 15)(4 16 8 11)(5 17 9 12)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)(41 58 46 53)(42 59 47 54)(43 60 48 55)(44 51 49 56)(45 52 50 57)(61 76 66 71)(62 77 67 72)(63 78 68 73)(64 79 69 74)(65 80 70 75)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 5)(2 4)(6 8)(9 10)(11 19)(12 18)(13 17)(14 16)(15 20)(21 29)(22 28)(23 27)(24 26)(25 30)(31 34)(32 33)(36 39)(37 38)(41 52)(42 51)(43 60)(44 59)(45 58)(46 57)(47 56)(48 55)(49 54)(50 53)(61 79)(62 78)(63 77)(64 76)(65 75)(66 74)(67 73)(68 72)(69 71)(70 80)

G:=sub<Sym(80)| (1,63,28,46)(2,69,29,42)(3,65,30,48)(4,61,26,44)(5,67,27,50)(6,64,24,47)(7,70,25,43)(8,66,21,49)(9,62,22,45)(10,68,23,41)(11,71,36,56)(12,77,37,52)(13,73,38,58)(14,79,39,54)(15,75,40,60)(16,76,31,51)(17,72,32,57)(18,78,33,53)(19,74,34,59)(20,80,35,55), (1,18,10,13)(2,19,6,14)(3,20,7,15)(4,16,8,11)(5,17,9,12)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,58,46,53)(42,59,47,54)(43,60,48,55)(44,51,49,56)(45,52,50,57)(61,76,66,71)(62,77,67,72)(63,78,68,73)(64,79,69,74)(65,80,70,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,5)(2,4)(6,8)(9,10)(11,19)(12,18)(13,17)(14,16)(15,20)(21,29)(22,28)(23,27)(24,26)(25,30)(31,34)(32,33)(36,39)(37,38)(41,52)(42,51)(43,60)(44,59)(45,58)(46,57)(47,56)(48,55)(49,54)(50,53)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(70,80)>;

G:=Group( (1,63,28,46)(2,69,29,42)(3,65,30,48)(4,61,26,44)(5,67,27,50)(6,64,24,47)(7,70,25,43)(8,66,21,49)(9,62,22,45)(10,68,23,41)(11,71,36,56)(12,77,37,52)(13,73,38,58)(14,79,39,54)(15,75,40,60)(16,76,31,51)(17,72,32,57)(18,78,33,53)(19,74,34,59)(20,80,35,55), (1,18,10,13)(2,19,6,14)(3,20,7,15)(4,16,8,11)(5,17,9,12)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,58,46,53)(42,59,47,54)(43,60,48,55)(44,51,49,56)(45,52,50,57)(61,76,66,71)(62,77,67,72)(63,78,68,73)(64,79,69,74)(65,80,70,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,5)(2,4)(6,8)(9,10)(11,19)(12,18)(13,17)(14,16)(15,20)(21,29)(22,28)(23,27)(24,26)(25,30)(31,34)(32,33)(36,39)(37,38)(41,52)(42,51)(43,60)(44,59)(45,58)(46,57)(47,56)(48,55)(49,54)(50,53)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71)(70,80) );

G=PermutationGroup([[(1,63,28,46),(2,69,29,42),(3,65,30,48),(4,61,26,44),(5,67,27,50),(6,64,24,47),(7,70,25,43),(8,66,21,49),(9,62,22,45),(10,68,23,41),(11,71,36,56),(12,77,37,52),(13,73,38,58),(14,79,39,54),(15,75,40,60),(16,76,31,51),(17,72,32,57),(18,78,33,53),(19,74,34,59),(20,80,35,55)], [(1,18,10,13),(2,19,6,14),(3,20,7,15),(4,16,8,11),(5,17,9,12),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35),(41,58,46,53),(42,59,47,54),(43,60,48,55),(44,51,49,56),(45,52,50,57),(61,76,66,71),(62,77,67,72),(63,78,68,73),(64,79,69,74),(65,80,70,75)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,5),(2,4),(6,8),(9,10),(11,19),(12,18),(13,17),(14,16),(15,20),(21,29),(22,28),(23,27),(24,26),(25,30),(31,34),(32,33),(36,39),(37,38),(41,52),(42,51),(43,60),(44,59),(45,58),(46,57),(47,56),(48,55),(49,54),(50,53),(61,79),(62,78),(63,77),(64,76),(65,75),(66,74),(67,73),(68,72),(69,71),(70,80)]])

62 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I4J4K5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I···20AB
order12222224444444444455888810···101010101020···2020···20
size112222020112224444202022202020202···244442···24···4

62 irreducible representations

dim1111111122222222244
type+++++++++++
imageC1C2C2C2C2C4C4C4D4D4D5D10D10C4×D5D20C5⋊D4C5⋊D4C42⋊C22C424D10
kernelC424D10D204C4C2×C4.Dic5C5×C42⋊C2C2×C4○D20C2×Dic10C2×D20C4○D20C2×C20C22×C10C42⋊C2C42C22×C4C2×C4C2×C4C2×C4C23C5C1
# reps1411122431242884428

Matrix representation of C424D10 in GL4(𝔽41) generated by

00400
00040
17100
402400
,
113200
93000
001132
00930
,
40700
34700
00134
00734
,
74000
73400
001411
002727
G:=sub<GL(4,GF(41))| [0,0,17,40,0,0,1,24,40,0,0,0,0,40,0,0],[11,9,0,0,32,30,0,0,0,0,11,9,0,0,32,30],[40,34,0,0,7,7,0,0,0,0,1,7,0,0,34,34],[7,7,0,0,40,34,0,0,0,0,14,27,0,0,11,27] >;

C424D10 in GAP, Magma, Sage, TeX

C_4^2\rtimes_4D_{10}
% in TeX

G:=Group("C4^2:4D10");
// GroupNames label

G:=SmallGroup(320,632);
// by ID

G=gap.SmallGroup(320,632);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,422,387,58,1123,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=d^2=1,a*b=b*a,c*a*c^-1=a*b^2,d*a*d=a*b^-1,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽